회귀분석1 [통계] 베이지안 회귀분석 회귀는 데이터로부터 모델을 추정하는 한 방법이다. 최소자승법이 잔차를 최소화 시키는 방법이라면, 베이지안 회귀는 가능도 최대화가 목적이다. 이 글의 최종 목표는 베이지안 회귀의 원리를 이해하고, python package인 pymc3을 활용까지 다뤄보는 것이다. 이번 포스팅에서는 우선 원리를 이해하는 것을 목표로 한다. 모델 가장 기본적인 선형 모델은 다음과 같이 쓸 수 있다. $y = \theta_{1}x + \theta_{2}$ + $\epsilon$ 이 때 $\theta_{1}$, $\theta_{2}$는 모델의 파라미터, $x$, $y$는 관측 값, $\epsilon$은 오차를 나타낸다. $x$, $y$라는 관측값으로 부터 $\theta_{1}$, $\theta_{2}$를 추정해 나가는 것이 목표.. 2020. 8. 28. 이전 1 다음